▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

New Massive Gravity: beyond 3D

Eric Bergshoeff

Groningen University

Work in progress

with Jose Juan Fernandez-Melgarejo, Jan Rosseel and Paul Townsend

Bilbao, January 31 2012

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusions

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

Introduction

General Spin

General Spin

3D "New Massive Gravity'

"New Massive" 4D Gravity

Conclusions

Outline

Introduction

General Spin

3D "New Massive Gravity"

General Spin

3D "New Massive Gravity

"New Massive" 4D Gravity

Conclusions

Outline

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

General Spin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusions

Outline

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

General Spin

3D "New Massive Gravity'

"New Massive" 4D Gravity

Conclusions

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

Why Higher-Curvature Gravity?

Consider 4D Einstein gravity as a theory of interacting massless spin 2 particles around a Minkowski space-time background

Problem: This theory is perturbative non-renormalizable

$$\mathcal{L} \sim \mathcal{R} + a \left(\mathcal{R}_{\mu
u}{}^{ab}
ight)^2 + b \left(\mathcal{R}_{\mu
u}
ight)^2 + c \, \mathcal{R}^2 \, :$$

renormalizable but not unitary

Stelle (1977)

massless spin 2 and massive spin 2 have opposite sign !

Special Case

- In three dimensions there is no massless spin 2!
 - ⇒ "New Massive Gravity"

• Can this be extended to higher dimensions?

 $D{=}4: \ phenomenological \ applications?$

for a review, see Hinterbichler (2011)

General Spin

3D "New Massive Gravity

"New Massive" 4D Gravity

Conclusions

Outline

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

▲□▶ ▲圖▶ ★国▶ ★国▶ - ヨー のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Zero Massless D.O.F.

Requirement : $G(S) \sim \square \Rightarrow E.O.M. : G(S) = 0$

$$s = 2 : p + q = D - 1$$

Example :
$$p = q = 1, D = 3, \qquad S \sim \square$$

"Boosting Up the Derivatives"

Massive Generalized FP

Curtright (1980)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\left(\Box - m^2\right) S = 0, \qquad \qquad S^{\mathrm{tr}} = 0, \quad \partial \cdot S = 0$$

$$\partial \cdot S = 0 \quad \Rightarrow \quad S = G(T)$$

$$(\Box - m^2) G(T) = 0,$$
 $G(T)^{tr} = 0$

Higher-derivative Gauge Theory

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

Outline

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions

3D Einstein-Hilbert Gravity

There are no massless gravitons

Adding higher-derivative terms leads to "massive gravitons"

Fierz-Pauli

•
$$(\Box - m^2) h_{\mu\nu} = 0$$
, $h_{\mu\nu} = h_{\nu\mu}$, $\eta^{\mu\nu} h_{\mu\nu} = 0$, $\partial^{\mu} h_{\mu\nu} = 0$

•
$$\mathcal{L}_{\text{FP}} = \frac{1}{2} h^{\mu\nu} G_{\mu\nu}(h) + \frac{1}{2} m^2 \left(h^{\mu\nu} h_{\mu\nu} - h^2 \right) , \quad h \equiv \eta^{\mu\nu} h_{\mu\nu}$$

no non-linear extension !

number of propagating modes is $\frac{1}{2}D(D+1) - 1 - D = \begin{cases} 5 & \text{for } 4D \\ 2 & \text{for } 3D \end{cases}$

Note: the numbers become 2 (4D) and 0 (3D) for m = 0

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Higher-derivative Extension in 3D

$$\partial^{\mu} \tilde{h}_{\mu
u} = 0 \quad \Rightarrow \quad \tilde{h}_{\mu
u} = \epsilon_{\mu}{}^{lphaeta} \epsilon_{
u}{}^{\gamma\delta} \partial_{lpha} \partial_{\gamma} h_{eta\delta} \equiv G_{\mu
u}(h)$$

$$\left(\Box - m^2\right) \ G_{\mu\nu}^{\mathrm{lin}}(h) = 0 \,, \qquad R^{\mathrm{lin}}(h) = 0$$

Non-linear generalization : $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \Rightarrow$

$$\mathcal{L} = \sqrt{-g} \left[-R + \frac{1}{m^2} \left(R^{\mu\nu} R_{\mu\nu} - \frac{3}{8} R^2 \right) \right]$$

"New Massive Gravity" : unitary !

Mode Analysis

• Take NMG with metric $g_{\mu\nu}$, cosmological constant Λ and coefficient $\sigma = \pm 1$ in front of R

• lower number of derivatives from 4 to 2 by introducing an auxiliary field $f_{\mu\nu}$

• after linearization and diagonalization the two fields describe a massless spin 2 with coefficient $\bar{\sigma} = \sigma - \frac{\Lambda}{2m^2}$ and a massive spin 2 with mass $M^2 = -m^2\bar{\sigma}$

 special cases: 3D NMG and D ≥ 3 "critical gravity" for special value of Λ

What did we learn?

• two theories can be equivalent at the linearized level (FP and boosted FP) but only one of them allows for a non-linear extension i.e. interactions !

• we need massive spin 2 whose massless limit describes 0 d.o.f.

Example : _____ in 3D

• what about 4D?

General Spin

3D "New Massive Gravity

"New Massive" 4D Gravity

Conclusions

Outline

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

Generalized spin-2 FP

describes
$$\begin{cases} 5 & \text{d.o.f.} & m \neq 0 \\ 2 & \text{d.o.f.} & m = 0 \end{cases}$$

generalized spin-2 :

Connection-metric Duality

- start with first-order form of EH with independent fields $e_{\mu}{}^{a}$ and $\omega_{\mu}{}^{ab}$
- linearize around Minkowski: $e_{\mu}{}^{a} = \delta_{\mu}{}^{a} + h_{\mu}{}^{a}$ and add a FP mass term $-m^{2}(h^{\mu\nu}h_{\nu\mu} - h^{2}) \rightarrow$

$$\mathcal{L} \sim h \partial \omega + \omega^2 + m^2 h^2$$

- solve for $\omega \rightarrow \text{spin-2 FP}$ in terms of h and auxiliary $h_{\mu\nu}$
- solve for $h_{\mu\nu}$ and write $\omega_{\mu}{}^{ab} = \frac{1}{2} \epsilon^{abcd} S_{\mu cd} \rightarrow$ generalized spin-2 FP in terms of S after elimination of auxiliary $S_{[\mu cd]}$

"New Massive" 4D Gravity

• start with generalized spin-2 FP in terms of

and subsidiary conditions

$$S_{\mu
u,
ho} \, \eta^{
u
ho} = 0 \,, \qquad \qquad \partial^{
ho} \, S_{
ho\mu,
u} = 0$$

• solve for
$$\partial^{
ho} \, S_{
ho\mu,
u} = 0 \ o \ S_{\mu
u,
ho} = G_{\mu
u,
ho}(\mathcal{T}) \ o$$

$$\mathcal{L}_{\text{NMG}} \sim -\frac{1}{2} T^{\mu\nu,\rho} G_{\mu\nu,\rho}(T) + \frac{1}{2m^2} \underbrace{T^{\mu\nu,\rho} C_{\mu\nu,\rho}(T)}_{\text{"conformal invariance"}}$$

• mode analysis \rightarrow

 $\mathcal{L}_{\rm NMG} \sim \text{massless spin 2 plus massive spin 2}$

General Spin

3D "New Massive Gravity'

"New Massive" 4D Gravity

Conclusions

Outline

Introduction

General Spin

3D "New Massive Gravity"

"New Massive" 4D Gravity

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

dimensional reduction

massless limit (van Dam-Veltman discontinuity)

• interactions?

compare to Einstein-Schrödinger theory

$$\mathcal{L}_{\mathsf{ES}} = \sqrt{-\det R_{(\mu\nu)}(\Gamma)} \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \mathcal{L}'_{\mathsf{ES}} = \sqrt{-\det g} \left[g^{\mu\nu} R_{\mu\nu}(\Gamma) - \Lambda
ight]$$

generalization to higher spin ?