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Why Higher-Curvature Gravity ?

Consider 4D Einstein gravity as a theory of interacting massless
spin 2 particles around a Minkowski space-time background

Problem: This theory is perturbative non-renormalizable

L ∼ R + a
(

Rµν
ab

)2
+ b (Rµν)

2 + c R2 :

renormalizable but not unitary
Stelle (1977)

massless spin 2 and massive spin 2 have opposite sign !
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Special Case

• In three dimensions there is no massless spin 2 !

⇒ “New Massive Gravity”

• Can this be extended to higher dimensions ?

D=4 : phenomenological applications ?

for a review, see Hinterbichler (2011)
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Massless Degrees of Freedom

field S ∼

gauge parameters λ1 ∼ λ2 ∼

gauge transformation δ = ∂ +
∂

curvature R(S) ∼ ∂

∂
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Zero Massless D.O.F.

“Einstein tensor” G (S) ∼ ⋆ ⋆
∂

∂

Requirement : G (S) ∼ ⇒ E.O.M. : G (S) = 0

s = 2 : p + q = D − 1

Example : p = q = 1 ,D = 3 , S ∼
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“Boosting Up the Derivatives”

Massive Generalized FP

Curtright (1980)

(
�−m2

)
S = 0 , S tr = 0 , ∂ · S = 0

∂ · S = 0 ⇒ S = G (T )

(
�−m2

)
G (T ) = 0 , G (T )tr = 0

Higher-derivative Gauge Theory
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3D Einstein-Hilbert Gravity

There are no massless gravitons

Adding higher-derivative terms leads to “massive gravitons”
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Fierz-Pauli

•
(
�−m2

)
hµν = 0 , hµν = hνµ , ηµνhµν = 0 , ∂µhµν = 0

• LFP = 1
2h

µνGµν(h) +
1
2m

2
(
hµνhµν − h2

)
, h ≡ ηµνhµν

no non-linear extension !

number of propagating modes is 1
2D(D + 1)− 1− D =

{
5 for 4D
2 for 3D

Note : the numbers become 2 (4D) and 0 (3D) for m = 0
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Higher-derivative Extension in 3D

∂µh̃µν = 0 ⇒ h̃µν = ǫµ
αβǫν

γδ∂α∂γhβδ ≡ Gµν(h)

(
�−m2

)
G lin
µν(h) = 0 , R lin(h) = 0

Non-linear generalization : gµν = ηµν + hµν ⇒

L =
√
−g

[

−R +
1

m2

(

RµνRµν −
3

8
R2

)]

“New Massive Gravity” : unitary !
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Mode Analysis

• Take NMG with metric gµν , cosmological constant Λ and
coefficient σ = ±1 in front of R

• lower number of derivatives from 4 to 2 by introducing an
auxiliary field fµν

• after linearization and diagonalization the two fields describe a
massless spin 2 with coefficient σ̄ = σ − Λ

2m2 and a massive
spin 2 with mass M2 = −m2σ̄

• special cases: 3D NMG and D ≥ 3 “critical gravity” for
special value of Λ
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What did we learn?

• two theories can be equivalent at the linearized level (FP and
boosted FP) but only one of them allows for a non-linear
extension i.e. interactions !

• we need massive spin 2 whose massless limit describes 0 d.o.f.

Example : in 3D

• what about 4D?
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Generalized spin-2 FP

standard spin-2 :

describes







5 d.o.f. m 6= 0

2 d.o.f. m = 0

generalized spin-2 :

describes







5 d.o.f. m 6= 0

0 d.o.f. m = 0
Curtright (1980)
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Connection-metric Duality

• start with first-order form of EH with independent fields eµ
a

and ωµ
ab

• linearize around Minkowski: eµ
a = δµ

a + hµ
a

and add a FP mass term −m2(hµνhνµ − h2) →

L ∼ h ∂ω + ω2 +m2 h2

• solve for ω → spin-2 FP in terms of h and auxiliary h[µν]

• solve for hµν and write ωµ
ab = 1

2ǫ
abcd Sµcd → generalized

spin-2 FP in terms of S after elimination of auxiliary S[µcd]
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“New Massive” 4D Gravity

• start with generalized spin-2 FP in terms of

and subsidiary conditions

Sµν,ρ η
νρ = 0 , ∂ρ Sρµ,ν = 0

• solve for ∂ρ Sρµ,ν = 0 → Sµν,ρ = Gµν,ρ(T ) →

LNMG ∼ −1
2T

µν,ρGµν,ρ(T ) +
1

2m2
Tµν,ρ Cµν,ρ(T )
︸ ︷︷ ︸

“conformal invariance”

• mode analysis →

LNMG ∼ massless spin 2 plus massive spin 2
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• dimensional reduction

• massless limit (van Dam-Veltman discontinuity)

• interactions ?

• compare to Einstein-Schrödinger theory

LES =
√

− detR(µν)(Γ) ⇔ L′

ES =
√

− det g [gµνRµν(Γ)− Λ]

• generalization to higher spin ?
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